Achieving Stability

- Stability: ability to maintain a stable, balanced position after a disruption of balance.
- Center of gravity must fall within base of support.
- Changing foot and body positions alters the base of support and center of gravity.
- A wide base of support and a lower body position increase stability.
- A narrow base of support and an elongated body position reduce stability.

Base of Support
Torque (Moment of Force)

- Torque: expression of rotational force.
 - All human joint movement is rotational in nature.
- The limbs act as levers that rotate around joints, acting as fulcra.
- The farther a resistance is from the axis of rotation, the greater the torque necessary to produce movement.

Torque

- Torque is the product of the magnitude of force (F) and the force arm (FA).
 - \(T = F \times FA \)
- When 2 forces produce rotation in opposite directions (gravity and muscle contraction), one is the resistance force (R) and its force arm is called the resistance arm (RA).
Torque and Exercise

• During exercise, the force arm (FA) is the perpendicular distance from the axis of rotation to the direction of application of that force.
• The resistance arm (RA) is the distance from the axis of rotation to the center of gravity of the moving limb.

Torque and Exercise

• Holding a dumbbell lengthens the resistance arm by moving the center of gravity away from the axis of rotation.
• The longer the resistance arm, the more torque is necessary to produce movement.
• Torque varies as a limb moves through the joint’s range of motion, due to change in the length of FA.

Force (F) and Force Arm (FA)
Effect of a Less-Flexed Position on the Force Arm

Resistance (R) and Resistance Arm (RA)

Modifications of Resistive Torque
Rotational Inertia
- Rotational inertia is resistance to the change of a body segment's position.
- Inertia depends on the mass of the segment and its distribution about the joint.
- A limb with a heavier mass concentrated a further distance from the joint axis is harder to move.
- Inertia depends on the mass of body segments, which cannot be changed.
- Inertia can be manipulated by changing the angle of a joint.

Angular Momentum
- Angular momentum is the product of rotational inertia and angular velocity.
- The faster a body part moves, and the greater its rotational inertia, the greater its angular momentum.
- The amount of force needed to change angular momentum is proportional to the amount of momentum.

Angular Momentum and Exercise
- Momentum during exercise is decelerated by eccentric muscle action.
- Greater mass moving at a greater speed requires more force to decelerate.
- Muscles can be injured if they are not strong enough to decelerate the force of ballistic movements.
Transfer of Angular Momentum

- Transfer of momentum from one body part to another is accomplished by stabilizing the initially moving body part.
 - In sports, angular momentum can be transferred from a body part to a ball, bat, or other apparatus.

Muscle Group Involvement in Activities

- Muscles work in groups to produce specific joint movements.
- Efficiency of movement can be improved upon by studying the mechanics of movement at a joint, and by making necessary changes.
- Training for strength and flexibility can influence the efficiency of movement.

Common Mechanical Errors: Walking and Running

- Stiff-legged running increases rotational inertia, and increases joint stress.
- Keep joint movements in the anterior–posterior direction to eliminate trunk rotation.
- Do not propel too high off the ground.
- Reduce impact by running softly and quietly.
Common Mechanical Errors: Throwing and Striking
• The more joints involved in a throwing motion, the more speed can be produced.
• Lack of trunk rotation and poor coordination of timing reduces velocity.
 – When striking, rotate the trunk to increase impact of the strike.
• Hip, trunk and upper limb movements should follow each other with fluid timing.
• Increased bat velocity results in increased impact on the ball, and greater

Overarm Throwing Movements

Common Mechanical Errors: Lifting and Carrying
• Lifting and carrying objects:
 – place the object close to or between the spread feet.
 – squat with an erect trunk.
 – activate abdominal muscles and tilt the pelvis backward.
 – use the hip and knee extensors to generate slow, smooth force.
 – carry the lifted object close to your body.
Use of Energy

- The body must break down food to a useable form that conserves energy.
- The final product must be a molecule the cell can use.

ATP (Adenosine Triphosphate)
- Used by cells as the primary energy source for biological work:
- Adenine and three phosphates linked by high-energy bonds.
- When the bond is broken, energy is released.
- $\text{ATP} \rightleftharpoons \text{ADP} + \text{Pi}$
ATP and Activity

- ATP is constantly converted to energy.
- ATP must be replaced as fast as it is used in order for muscles to continue to generate force.
- Muscle cells have the capacity to regenerate ATP under a variety of work conditions, using multiple sources.

Energy and Work

<table>
<thead>
<tr>
<th>Immediate energy sources</th>
<th>Short-term energy sources</th>
<th>Long-term energy sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic</td>
<td>Anaerobic</td>
<td>Aerobic; occurs in the mitochondria</td>
</tr>
<tr>
<td>ATP/PC</td>
<td>Glycolysis (breakdown of CHO)</td>
<td>Muscle glycogen, glucose, plasma FFA</td>
</tr>
<tr>
<td>Maximal work, 1-5 seconds</td>
<td>Maximal work, <2 minutes</td>
<td>Maximal work, >2 minutes, and all submaximal work</td>
</tr>
<tr>
<td>Shot put, vertical jump, short sprint (50 m)</td>
<td>200-400-meter race, 100-meter swim</td>
<td>1,500-meter race, marathon</td>
</tr>
</tbody>
</table>

Exercise Intensity and Duration and Energy Production

- Energy from both anaerobic and aerobic sources is on-going.
- Short duration, high-intensity activity relies on a greater proportion of anaerobic energy.
- Long duration, lower-intensity exercise relies on a greater proportion of aerobic energy.
Skeletal Muscle

- Converts ATP chemical energy to mechanical work.
- Muscle fiber:
 - each cylindrical fiber is one cell.
 - striated, with light and dark bands of myofibrils.
 - myofibrils are composed of long series of sarcomeres, the fundamental units of muscle contraction.

Muscle Structure
Muscle Structure

Sliding Filament Theory
• Thin actin filaments slide over thick myosin filaments.
• Z-lines pull toward the center of the sarcomere.
• Entire muscle shortens.
• Contractile proteins do not change size

Cross-Bridge Movement in Muscle Contraction
Steps of Muscle Contraction
- Muscle is depolarized (excited) by a motor neuron.
- Action potential spreads through transverse tubules.
- Sarcoplasmic reticulum releases calcium into sarcoplasm.
- Calcium binds with troponin.
- Actin and myosin cross-bridges interact to shorten muscle.

Muscle Fiber Types and Performance

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Description</th>
<th>Primary ATP source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type IIx (fast glycolytic)</td>
<td>Fast contraction, high force, easily fatigue</td>
<td>Anaerobic: PC breakdown and glycolysis</td>
</tr>
<tr>
<td>Type IIa (fast oxidative glycolytic)</td>
<td>Fast contraction, high force, resist fatigue</td>
<td>Both anaerobic, and aerobic</td>
</tr>
<tr>
<td>Type I (slow oxidative)</td>
<td>Slow contraction, low force, resist fatigue</td>
<td>Aerobic</td>
</tr>
</tbody>
</table>

Muscle Fiber Types: Genetics
- Distribution is highly variable and strongly influenced by genetics
- Training does not convert fast-twitch fibers to slow-twitch and vice versa
- Training increases mitochondrial number and capillary density (oxidative capacity)
Force Development in the Muscle

- **Muscle fiber** is excited by a low-level stimulus, single twitch occurs, followed by relaxation.
- **Summation**: If the frequency of stimulation increases, the muscle cannot relax between stimuli, and the stimulus adds to the tension of the previous contraction.
- **Tetanus**: Increased frequency of stimulation causes contractions to fuse into a smooth, sustained high-tension contraction.
- **Synchronous firing**: When many fibers contract simultaneously, the force of contraction is greater.
- **Recruitment**: The number of muscle fibers recruited for a contraction determines force of contraction.

Muscle Fiber Type Recruitment

![Graph showing muscle fiber type recruitment](image)

Measuring Oxygen Consumption

- \(VO_2 = \) volume \(O_2 \) inhaled - volume \(O_2 \) exhaled
- Measured by pulmonary ventilation.
- \(O_2 \) is used and \(CO_2 \) is produced as a waste product in the muscle mitochondria.
Path of Oxygen to Mitochondria

lungs ➞ alveoli ➞ blood (hemoglobin) ➞ muscles ➞ mitochondria ➞ ATP production

Respiratory Quotient

• Tells what type of fuel the muscles are using during exercise.
• R = VCO₂/VO₂
• R for Carbohydrate: 1.0
• R for Fat: 0.7
• @ R of .85: 50% carbs, 50% fat
• During intense exercise, lactate production can cause R values >1.0.

Exercise Intensity and Fuel Utilization

• At 40–50% VO₂ max, R increases.
• Type Ila fibers are recruited.
• Muscle glycogen fuels heavy exercise lasting < 2 hours.
• Shortage of muscle glycogen leads to premature fatigue.
• Heavy exercise requires abundant muscle glycogen stores and consumption.
Effect of Exercise Intensity on Fuel Utilization/ Changes in R

- During moderate-intensity exercise, R decreases over time.
- Reliance on fat for fuel increases.

Exercise Duration and Fuel Utilization

Changes in R During Steady State Exercise/ Effects of Fuel Utilization
Effect of Diet on Fuel Utilization

- A high-carbohydrate diet maximizes muscle glycogen stores.
- Strenuous exercise promotes maximal muscle glycogen storage.
- Consuming carbohydrates during prolonged exercise reduces the time to fatigue.
- Consuming carbohydrates after exercise replenishes glycogen stores.

Transition from Rest to Steady State

- Oxygen Deficit
 - initial stages of exercise.
 - \(O_2 \) demand > \(O_2 \) supply.
 - PC and glycolysis provide some energy
 - HR, Stroke Volume (SV) and ventilation increase to meet \(O_2 \) demand

- Steady State
 - \(O_2 \) supply = \(O_2 \) demand
 - oxidative energy pathways prevail
- EPOC (excess post-exercise oxygen consumption)
 - used to make additional ATP
 - returns muscle PC stores to normal
 - meets ATP demands of breathing and HR during recovery
Transition from Rest to Steady State

Heart Rate and Pulmonary Ventilation
- HR and ventilation follow a similar curve during exercise.
- Trained individuals reach steady state sooner, and recover faster than untrained.

GXT (Graded Exercise Test)
- Measures CRF (cardiorespiratory fitness).
- Determines maximal O₂ uptake (VO₂ max).
- Describes the greatest rate at which the body can make ATP.
- Genetics and training both determine VO₂ max.
GXT (Graded Exercise Test)

- Women's VO\(_2\) max values are 15% lower than men's.
 - higher body fat, lower hemoglobin levels, and lower stroke volume (smaller heart)
- VO\(_2\) max declines about 1% per year of age.
 - decline can be reversed by training in middle-aged individuals.

GXT (Graded Exercise Test)

- VO\(_2\) max decreases with altitude.
- Carbon monoxide in polluted air decreases VO\(_2\) max.
- Cardiovascular and pulmonary diseases reduce VO\(_2\) max.
 - diminished \(O_2\) diffusion from air to blood.
 - diminished pumping capacity of the heart.

Cardiac Output

- Heart Rate: Heart beats per minute.
- Stroke Volume:
 - amount of blood pumped with each beat.
 - the primary limiting factor influencing VO\(_2\) max.
- Cardiac Output (CO)
 - \(CO = HR \times SV\)
 - Total volume of blood circulated per minute.
Oxygen Extraction

- The amount of O_2 extracted from circulating blood by the cells.
- Determined by arteriovenous O_2 difference (a–v O_2 difference).
- Trained individuals extract more O_2
 - more capillaries feeding the cells.
 - more mitochondria in the cells.

Blood Pressure

- Balance between cardiac output and resistance to flow in the vessels.
- $BP = \text{Cardiac Output} \times \text{Resistance}$
- SBP (Systolic Blood Pressure)
 - arteriole pressure during LV contraction (systole).
 - goes up during exercise.
- DBP (Diastolic Blood Pressure)
 - arterial pressure during filling (diastole).
 - stays constant, or drops slightly, during endurance exercise.

Blood Pressure

- Training lowers blood pressure over time (SBP and DBP).
- BP and HR are higher during arm exercise vs. leg exercise.
 - arm work limits total work volume.
 - leg work results in lower HR, BP, and later onset of fatigue.
Effects of Endurance Training

Effects of Endurance Training

Effects of Endurance Training

Effects of Endurance Training
Transfer of Training

• Training is specific to the muscles involved.

• Training benefits do not transfer to other body parts.

Detraining

• Cessation of Training
 – maximal O$_2$ uptake decreases.
 – initial decrease due to reduced SV.
 – eventual decrease in O$_2$ extraction.

• Reduction in Training
 – O$_2$ uptake can be maintained with intense exercise, even with reduced duration and frequency.

Exercise Responses for Males and Females

• At the same relative treadmill workload, women respond with a higher HR:
 – lower SV
 – less hemoglobin
 – more body fat

• At the same relative cycle workload, women have a higher HR:
 – lower SV
 – less hemoglobin
CV Response to Isometric and Weight Training

- Initially, during exercise, both isometric exercise and weight training elicit increased blood pressure.
- Both SBP and DBP go up.

Blood Pressure Responses to Weightlifting

Heat Loss Mechanisms

The body loses heat through four processes:

- Radiation
- Conduction
- Convection
- Evaporation of sweat*

*Primary mechanism for heat loss during exercise
Body Temperature Response to Exercise

- Core temperature rises proportionately to intensity.
- During early exercise, rise in temperature triggers heat-loss mechanisms.
- After 10–20 minutes of exercise, heat loss = heat production, and core temperature remains constant.

Heat Loss During Exercise

- Evaporation is responsible for heat loss during heavy exercise.
- In hot, humid environments, evaporation is less efficient.
- Training in a hot, humid environment for 7–12 days increases heat tolerance and lowers body temperature during exercise.

Evaporation Must Increase as Temperatures Rise
Questions/Discussion?